Composition of the Essential Oil of *Seseli buchtormense* (Fisch. ex Sprengel) W. Koch from Altai

Alexey V. Tkachev,^a <u>Elena A. Korolyuk</u>,^b Wilfried König,^c Yulia V. Kuleshova,^d Wudeneh Letchamo^e

 ^a Department of Natural Sciences, Novosibirsk State University Pirogova Str. 2, 630090 Novosibirsk, Russia, e-mail: <u>atkachev@nioch.nsc.ru</u>
^b Novosibirsk Institute of Organic Chemistry Novosibirsk 630090, Russia
^c University of Hamburg, Institute of Organic Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
^d Department of Chemistry, Altai State University Dimitrova Street 6, 656099, Barnaul, Russia
^e Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey 76 Lipman Drive, New Brunswick, N.J. 08901, U.S.A.

Essential oil from 5 samples of freshly collected whole flowering tops of *Seseli* buchtormense (Fisch. ex Sprengel) W. Koch (whole flowering plants) growing wild in Altai region was studied by GC-MS using a quadruple MS (Hewlett-Packard MSD 5971) coupled to a HP 5890/II GC fitted with an HP-5 fused silica column (30 m×0.25 mm, film thickness 0.25 μ m, (5%)-diphenyl-(95%)-dimethylsiloxane copolymer). Samples of the crude oils were analyzed "as is" by GC-MS followed by analysis of the fractions to complete identification. Fractionation was carried out as follows. A sample of the crude oil (10 ml) was slowly heated (40°C \rightarrow 100°C) at vigorous stirring in vacuum (20 \rightarrow 2 mm Hg) to distill off the most volatile components. The residue was then fractionized by column chromatography (SiO₂, hexane-Me-O-*tert*-Bu) to give sesquiterpene hydrocarbons, low polar components (ethers, esters, ketones, etc.) and polar compounds (alcohols). Percentages were calculated from GC peak areas without using a correction factor. Oil components were identified by a combination of retention times and standard mass spectra. Most of the components were identified using standard mass-spectra, retention indexes and high-field ¹H and ¹³C NMR spectra.

The main constituents of the oils were α -pinene (5-15%), sabinene (17-25%), β -pinene (1-2%), β -myrcene (3-7%), α -phellandrene (0.1-1.5%), limonene (1-5%), β -phellandrene (2-7%), *cis*- β -ocimene (1-4%), γ -terpinene (0.5-1.2%), fenchone (1-7%), linalool (0.3-2%), terpineol-4 (1-1.5%), germacrene D (2-4%), α -muurolene (1-1.5%), γ -cadinene (0-2%), δ -cadinene (3-6%), kessane (0-2%), *E*-nerolidol (5-12%), germacrene D-4-ol (3-5%), *epi*- α -cadinol (1-3%), α -cadinol (2-3%), α -bisabolol (0-8%), 6- α -hydroxy-germacra-1(10),4-diene (2-5%).