Photoreactive tRNA Derivatives as a Tool for Investigation of Protein -Nucleic Acid Interactions

Nina A. Moor, Valentina N. Ankilova, Alain Favre¹, Olga I. Lavrik

Novosibirsk Institute of Bioorganic Chemistry, 630090 Novosibirsk, Russia ¹Institut Jacques Monod, CNRS-Universite Paris 7, 75251 Paris Cedex 05, France

Photoreactive tRNA^{Phe} derivatives containing s⁴U residues have been prepared by using T7 RNA polymerase transcription system. The substitution of 16 U residues with s⁴U ([16s⁴U]-tRNA^{Phe}) resulted in 14-fold reduction of catalytic efficiency of aminoacylation with T. thermophilus phenylalanyl-tRNA synthetase (PheRS). [1s⁴U]-tRNA^{Phe} was prepared by random incorporation of s⁴U residues followed by affinity electrophoresis isolation. s⁴U-monosubstituted tRNA molecules were aminoacylated with kinetic parameters similar to those of the wild-type tRNA^{Phe} transcript. s⁴U-containing tRNA^{Phe} derivatives have been cross-linked to PheRS and the specificity of the labeling has been proved. The stoichiometry of labeling suggests thermophilic PheRS to be a functional dimer. Both α and β subinits of the $\alpha_2\beta_2$ enzyme were labeled, with the products of simultaneous coupling of both subunits to [16s⁴U]-tRNA^{Phe} being formed. The preferential labeling of α subunits indicates the enzyme to contact with tRNA at positions not resolved in the crystal structure of the complex [1]. tRNA^{Phe}-s⁴U-75 has been prepared using tRNA nucleotidyl transferase. The nucleotide at the position 75 has been shown to form base specific contacts with β -subunit of Th. thermophilus PheRS. tRNA^{Phe} sites contacting with the enzyme have been identified using various techniques. The D stem-loop, the T stem-loop and the variable loop of tRNA^{Phe} are shown to interact with small (α) subunits of the enzyme. The acceptor end and anticodon loop are found to contact with large (β) subunits of the enzyme. The structural data gained using s⁴U-monosubstituted tRNA transcripts are specially useful to get interrelation of tRNA•enzyme contacts and their functional significance since monosubstituted tRNA^{Phe} analogs cross-linked to PheRS retain their aminoacylation ability [2]. Substrate competence of tRNA cross-linked to aminoacyl-tRNA synthetase has been shown for the first time.

- Y. Goldgur, L. Mosyak, L. Reshetnikova, V. Ankilova, O. Lavrik, S. Khodyreva and M. Safro . (1997) Structure, 5: 59-68.
- 2. Moor N.A., Favre A., Lavrik O.I. (1998) FEBS Lett, 427: 1-4.

This work was supported by the grant of Russian Fund for Basic Research N 96-04-50150 and by INTAS grant No. 97-2110.