Synthesis, Crystal Structure and Some Physical Properties of 2(1',2',2',2'-tetrafluoroethylidene)-3,3-bis-Trifluoromethyl-2,3-dihydrobenzo[4,5]-imidazo[2,1-b]-thiazole

Andrey V. Rogoza, Yuri V. Gatilov

Novosibirsk Institute of Organic Chemistry, Pr. Lavrentjeva 9, 630090 Novosibirsk, Russia,
Fax: +7(3832)-34-47-52

Synthesis of structural analogs of known biologically active compounds is a useful way of improving their properties. One such attempt is synthesis of tetramizol (active antihelmintic) analog by the reaction of perfluoro-2-methyl-pentene-2 with benzimidazol-2-thiole in the presence of triethylamine giving rise to the titled compound.

\[
\begin{align*}
F_3C & \quad C_2F_5 \\
F_3C & \quad F
\end{align*}
\]
\[\text{+} \]
\[
\begin{align*}
N & \quad \text{SH} \\
N & \quad \text{H}
\end{align*}
\]
\[\stackrel{\text{NET}_3}{\text{MeCN}} \rightarrow \]

The obtained compound shows very unusual properties. In contrast to precursors, it is easily soluble almost in any common solvent, ranging from methanol to hexane and even perfluoro-2-methyl-pentene-2 (!). The highest solubility may be attributed to superlipophilicity of entered perfluoroalkyl groups. Compound is extremely volatile, so that X-ray analysis was difficult. According to X-ray data dimers are formed. To rationalize this we assumed that sulfur atom becomes acceptor (Lewis acid) under the effect of electron-withdrawing perfluoroalkyl group, but nitrogen is still keeping Lewis basicity. Dimers topology is so similar to guanine-cytozine and adenine-thymine pairs topology in DNA and RNA that it seems to be possible the influence of titled compound on the processes with participation of the last-mentioned.