Abstracts of Posters 177

Vicinal Amino- and (N-Acetylamino)alkynylpyrazoles are Convenient Synthones for Preparing Potential Physiologically Active Compounds

Eugene V. Tretyakov and Sergei F. Vasilevsky

Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russian Federation. Fax: +7 383 234 2350; e-mail: vasilev@ns.kinetics.nsc.ru

Substantial efforts have been directed over the last decade toward a development of methods of synthesis of *vic*-functionalized aryl- and hetarylacetylenes. Vicinal aminoalkynylpyrazoles are very perspective class of compounds for a search of medicines. It is known that aminoalkynylpyrazoles possess different biological activities [1].

In this connection, we have initiated the development of synthesis of vicinal aminoalkynylpyrazoles with all possible versions of the arrangement of functional groups ($C \equiv C$ and NH_2). It is noteworthy, that the information about the synthesis of vicinal aminoalkynylpyrazoles is rather poor and the use of usual methods for introducing acetylenic substituents is not obviously due to a strong +M-effect of amino group.

In spite of the Pd/Cu- catalyzed cross-coupling of halogenoarenes with 1-alkynes is known about 25 years. For the first time we observe that the reaction of iodopyrazoles with 1-alkynes bearing the electron-releasing substituent is unsuitable for synthesis of alkynylpyrazoles. 3-, 5-Iodopyrazoles 1 (R = H) did not enter the reaction, but in the case of vicinal 4-iododerivatives 1 their reductive desiodination, accompanied by the homocoupling of 1-alkynes (up to 90%), was the only reaction. These complications were avoided by applying acetyl protection for amino group and acetylide method of cross-coupling. The condensation of (N-acetylamino)pyrazoles 2 with copper acetylides in pyridine at 110-115°C in argon atmosphere and the subsequent hydrolysis afford acetylaminoacetylenes 3 in 65-75% overall yields. Thus, the reaction of copper acetylides with amino- and (N-acetylamino)iodopyrazoles was established to be a common method for preparation of (N-acetylamino)alkynylpyrazoles.

Pyrazoles containing an acetylenic substituent and an amino group on the adjacent carbon atoms can be used to prepare of acylaminopyrazoles **4**, pyrrolopyrazole **5**, and pyrazolopyridazine **6** derivatives. Both condensed systems are the perspective compounds for the finding of new drugs.

References:

[1] A.K. Godad, B.S. Kittur, S.G. Kapsi, Arzneim-Forsch. 1996, 46, 1082.