(+)-3-Carene as a Versatile Precursor for Indoloterpenoids

Olga N. Burchak

Novosibirsk Institute of Organic Chemistry,

Acad. Lavrentyev Ave., 9 Novosibirsk, 630090, Russia: e-mail: burchak@nioch.nsc.ru

Keto nitrile 2 (X = CN) and keto ester 2 ($X = CO_2Me$) derived from natural monoterpene hydrocarbon (+)-3-carene (1) have been found to be precursors for a number of biologically active organic substances fumigants, repellents and insecticides. Now we report on synthesis of new indole type derivatives starting from these *seco*-derivatives.

Indoles 3 and 4 were obtained by Fisher's method, which included the reaction of ketones 2 (X = CN, CO_2Me) with different arylhydrazines ($R^1 = ortho$ -Br, ortho- and para-OMe). Alkylation of compound 4 (X = CN) under phase-transfer catalysis resulted in N-substituted indoloterpenes 5 ($R^2 = Me$, All, CH_2Ph), alkylation with dibromomethane giving dimers 7 (X = CN, CO_2Me). Acylation of indole 4 (X = CN, $R^1 = H$) were succeed by Vilsmeier-Haack formylation only (treating with $POCl_3$ in DMF) to give product 5 ($R^2 = CHO$) in 80% yield. Under the same reaction conditions, compound 5 ($R^2 = Me$) were converted to aldehyde 6.

i - ArN₂H₃/AcOH, 32-48%; **ii** - ArN₂H₃/AcOH, 23-79%; **iii** - R²Hal/50% aq. NaOH/CH₂Cl₂/TEBA, 72-84%; **iv** - POCl₃/DMF, 60%; **v** - CH₂Br₂/50% aq. NaOH/CH₂Cl₂/TEBA, 35%; **vi** - R³NH₂ or H₂N(CH₂)_nNH₂, 31-44%

Amides 8 and 9 were prepared from ester 4 ($X = CO_2Me$) by nucleophilic substitution of methoxy-group by different primary amines. Substances 8, 9 and 3 (Y = N) are prospective chiral nitrogen-containing ligands in complexes of the type «host-guest», in particular as a potential receptor for the oriented binding of the uric acid type molecules.